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Abstract-The standard M-path analysis channelizer center 
frequencies coincide with the M sampled data frequencies of 
the M-point DFT, the frequencies with integer number of cy-
cles per length of M-samples. These are the M multiples of 
fs/M, the frequencies that alias to DC when their sinusoids 
are down sampled M-to-1. The spacing between center fre-
quencies is also fs/M as is the output sample rate when max-
imally decimated. There is a channelizer variation that have 
its center frequencies offset by the half channel spacing. 
These center frequencies are located midway between the 
DFT frequencies and contain (2M+1)/2 cycles per interval 
per length of M-samples. In this channelizer the index 0 is not 
the center frequency of the baseband channel but rather the 
crossover frequency of the adjacent bins centered at ±0.5 cy-
cles per interval. The filters have the same bandwidth and 
have the same sample rate of the DFT bin centered channel-
izer. Changes to the standard channelizer to obtain the offset 
channelizer require a complex heterodyne of the input series 
or a complex heterodyne of the filter coefficients. In this pa-
per we present interesting and useful modifications to the 
channelizer structure that avoids the complex heterodyne 
when converting between the channelizer options. By avoid-
ing the complex multiplies at the input sample rate, the mod-
ified channelizers have a reduced signal processing work-
load. 
 
Keywords – offset bin-centered channelizers, even and odd 
center frequency channelizers, modified polyphase filter 
bank, non maximally decimated even and odd bin centered 
channelizers, non-maximally decimated; offset center fre-
quencies. 
 

I. INTRODUCTION 
 
      The M-path analysis channelizer center frequencies coin-
cide with the M sampled data frequencies of the M-point 
DFT, the frequencies with integer number of samples per 
length of M-samples. These are the M multiples of fs/M, the 
sinusoid frequencies that alias to DC when they are down 
sampled M-to-1. The spacing between center frequencies is 
fs/M as is the output sample rate when maximally decimated. 
The first channelizer variation we examine is shown in Figure 

1. Here we present the spectra of two channelizers with 
equally spaced center frequencies, say 2 MHz, but with dif-
ferent center frequency locations. In the upper subplot, the 
center frequencies reside on half the even integer frequencies 
∆f⋅(2k)/2 while in the lower subplot, the center frequency re-
side on half the odd integer frequencies ∆f⋅ (2k+1)/2. The fil-
ters have the same shape, bandwidth, and sample rate in their 
respective implementations.  

 
Figure 1. Spectra of channelizers with even and with odd indexed 
center frequencies with same channel shape, bandwidth, and fre-
quency spacing. Upper subplot centers match DFT center frequen-
cies centered on half the even integers. Lower subplot centers are 
offset by half their spacing centered on half the odd integers. 
 
The standard response to the problem that a signal and a filter 
do not reside at the same center frequency is to move one of 
them: the signal to the filter (by the Armstrong heterodyne) 
or the filter to the signal (using the Equivalency theorem). 
These two options are shown in Figure 2. In both cases, a 
complex heterodyne at the input rate is required to perform 
the spectral alignment. While the frequency shift of the input 
signal or of the filter frequency response solves the offset 
problem, it does so at some cost. Rather than shift the input 
signal’s spectrum or the filter’s spectrum half a bin width, we 
can consider a much larger, spectral shift, but a shift less ex-
pensive to implement. We start by examining the FFT that 
implements the DFT. Here we discuss the FFT even though 
the channelizer uses the IFFT because we more easily visual-
ize frequency bins when we see the FFT. Many FFTs are im-
plemented by the radix-2 Cooley-Tukey algorithm which is a 
transform for an even number of points, say 16 for example. 

In that FFT, there is the same symmetry of the spectral points 
about index 0 as there is about index 8 (or M/2). We often use 
MATLAB’s fftshift command to interchange index 0 and in-
dex M/2 for display purposes. This exchange preserves the 
spectral symmetries of an even length FFT but it is not pre-
served for an odd length FFT. Let us consider a DFT for an 
odd number of points, say 15 for example. Such a DFT can 
be implemented by a Good-Thomas (GT) algorithm or by a 
conventional mixed radix Cooley-Tukey (CT) algorithm. An 
advantage of using the GT transform is there are no twiddle 
factors in the algorithm and the arithmetic is performed with 

real arithmetic and requires fewer arithmetic operations. As a 
side note, a 16 point CT FFT requires 36 real multiplies while 
a 15 point GT FFT requires 10 real multiplies.  
      Figure 3 shows the root locations of Z15 – 1 which corre-
sponds to the center frequencies of a 15 point DFT. On the 
left subplot, the zero frequency location of an unaltered input 
sequence is indicated on the circle. This of course coincides 
with index 0 of the 15 point DFT. On the right subplot, the 
zero frequency location of the input sequence following a het-
erodyne to the half sample rate by alternating signs is indi-
cated at the half sample rate on the circle. The DC term is 
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Figure 2. Aligning spectra of input signal with spectral responses of 
filter bank by complex heterodyne of input signal in upper subplot 
or by complex heterodyne of filter coefficient weights in lower sub-
plot. 
 
seen to reside midway between indices 7 and 8 of the 15 point 
DFT. This means that the indices 7 and 8 correspond to the 
two frequencies below and above DC by half the channel 
spacing. In this process, we do not have to a apply complex 
heterodyne to the input series or to the filter weights to access 
the half bandwidth offset frequency channelizer responses. 
The interaction of the odd length DFT and the alternating sign 
input heterodyne place the offset input frequency centers in 
the DFT bin centers. We simply have to relabel the bin indi-
ces to the offset center frequencies of the half sample rate ro-
tated input spectrum. The mapping from bin index k to center 
frequency index fk is shown in (1). For this example, if fs=150 
MHz and M=15, frequency f8 is shown in (2) to be +5 MHz. 

 

S S
k

f ff =( k - )
M 2

         (1) 

8
150 150f =( 8 - ) MHz
15 2

=( 8×10-75) =  5 MHz
       (2) 

 
II. INPUT HETERODYNE TO FILTER WEIGHTS 

 
In the previous section we learned the benefit of selecting an 
M-path channelizer with M selected to be odd integer. We 
used the fact that while DC resided on an FFT index, the half 
sample rate resided midway between a pair of FFT indices. 
The input heterodyne of DC to the half sample rate placed bin 
centers offset from DC by half the channel spacing. We still 
have to access alternate input samples to perform sign rever-
sals. While we have avoided the complex rotation we are still  

 
 
Figure 3. Two Unit Circles with Roots of (Z15 – 1), the Frequencies 
Corresponding to a 15 point DFT. The Left Subplot Indicates the 
Location of DC or Zero Frequency of an Unaltered Input Sequence 
Presented to the DFT. The Right Subplot Indicates the Location of 
DC or Zero Frequency Heterodyned to the Half Sample Rate by an 
Alternating Sign Heterodyne of the Input Sequence.   
 
accessing input samples at the high input sample rate. We 
wonder if we can use the odd length FFT with the embedded 
offset at the half sample rate but avoid the heterodyne of the 
signal to the half sample rate. The question suggests that we 
are not quite finished with this thinking outside the box ex-
ample. We now examine how the alternating sign input data 
interacts with the filter coefficients. Figure 10.4 shows the in-
put data index and the data signs for two successive inputs of 
15 new input samples to 15 point polyphase filter operating 
in its maximally decimated form. Note the sign reversals of 
the corresponding sample positions in the two new input vec-
tors. These sign reversals cause the path outputs to have the 
desired sign reversals of the input heterodyne. We could use 
a state machine with embedded sign reversals in the poly-
phase filter coefficients to obtain the same sign flipping be-
havior seen in Figure 4, but a different option quickly pre-
sents itself.   
 

 
 
Figure 4. Polyphase Filter Input Sample Indices and Sign of Input 
Heterodyne for Two Successive 15-Point Data Samples in 15-Path 
Polyphase Filter.  
 
Figure 10.5 shows the input data index and the alternating 
data signs for two successive inputs of 10 new input samples 
to 15 point polyphase filter operating in its non-maximally  
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Figure 5. Polyphase Filter Input Sample Indices and Sign of Input 
Heterodyne for Two Successive 10-Point Data Sample Sequences in 
15-Path Polyphase Filter. Note there are no Sign Reversals of the 
Two New Input Vectors    
 
decimated 10-to-1 down sampling form. We note that there 
are no sign changes in corresponding positions of successive 
10-sample input vectors in the non-maximally decimated ver-
sion of the 15 path filter. This is because the length of the 
successive input vectors is, 10 which is a multiple of the 2 
sample period of the sign changes of the input heterodyne. 
Here it comes! Because the signs don’t change on successive 
inputs, we can associate the signs with the filter weights. That 
is, rather than heterodyne the input samples to the half sample 
rate at the input sample rate, we heterodyne the filter weights 
as an off-line operation. This is an interesting version of the 

 
Figure 6. Aligning Spectra of Input Signal with Spectral Responses 
of Odd Length, Non-Maximally Decimated Filter Bank by Alternat-
ing Sign Heterodyne of Input Signal in Upper Subplot or by Alter-
nating Sign Heterodyne of Filter Coefficient Weights in Lower Sub-
plot. 
 
equivalency theorem embedded in the polyphase filter. Fig-
ure 6 shows the application of the equivalency theorem to the 
non-maximally decimated filter bank formed by an odd 
length polyphase filter. Interestingly there is no on-line signal 
processing required to obtain the odd-indexed filter centers in 
this version of the M-path filter. Figure 7 shows the input and 
output spectrum formed by the 15-path polyphase filter with 
alternating sign heterodyne embedded in filter weights. This 
is a very nice result.       

 
Figure 10.7. Spectra of Input Signal and Channel Centers of 15-Path Polyphase Channelizer Performing 10-to-1 Down Sampling with Align-
ment of Channelizer Spectra with Half-Channel Bandwidth Offset Performed by Embedding Alternating Sign Heterodyne in Filter Weights. 
Lower 15 Subplots Show Spectra Obtained at Each Baseband Channel Output Port. 
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Our last comments on this equivalency theorem application 
follows. If you have need of an even length transform you 
would lose the half sample rate being located midway be-
tween DFT frequency indices. We can still use the spectral 
location between DFT indices at the quarter sample rate. As 
an example, Figure 10.8 shows DC at index 0 of an 18 point 
DFT without the heterodyne and midway between indices 4 
and 5 of the 18 point DFT as a result of an input heterodyne 
by exp(j n π/2). To be able to embed the phase shifts in the 
polyphase filter the down sample rate P must be a multiple of 
4 to keep the phase changes stationary in the filter on succes-
sive inputs of length P. We demonstrated successful opera-
tion of this modified process with an 18-path filter and 18-
point FFT performing 12-to-1 down sampling.  There is, of 
course, a re-indexing required to locate the shifted frequency 
centers at the offset DFT output indices. 
 

 
Figure 8. Two Unit Circles with Roots of (Z18 – 1), the Frequencies 
Corresponding to an 18 point DFT. The Left Subplot Indicates the 
Location of DC or Zero Frequency of an Unaltered Input Sequence 
Presented to the DFT. The Right Subplot Indicates the Location of 
DC or Zero Frequency Heterodyned to the Quarter Sample Rate by 
exp(j n π/2)  Heterodyne of the Input Sequence. 
 

III. CLOSING COMMENTS 
We have described a clever way to implement an M-channel 
analysis channelizer with frequency bin centers offset from 
DC by half their channel spacing. This bin location variation 
is traditionally referred to as odd indexed bin centers. The 
reason designs use the odd indexed bin centers is we can 
form a symmetric allocation of channels with an even num-
ber of bin centers. When we have the even indexed bin cen-
ters, the symmetric channel assignment have an odd number 
of channels with one channel centered at DC which may or 
may not be occupied. Many OFDM based systems avoid 
centering a channel at DC due to the DC bin corruption by 
various DC intrusion sources. These sources include analog 
mixers self-mixing components, ADC truncation quantiza-
tion of input samples, and 2’s complement bias due to trun-
cation arithmetic. The traditional response to aligning the 
bin centers of an analysis channelizer with the offset bin cen-
ters of a multichannel odd indexed bin centered received sig-
nal is a complex heterodyne applied to the received signal. 
Another option embeds the heterodyne in the filter weights 
of the channelizer. In this paper we showed that a channel-
izer with an odd number of paths and an odd number center 
frequencies in its IFFT algorithm had an interesting sym-
metry anomaly. The IFFT bin centers symmetric about DC  

include the DC bin but the bin centers symmetric about the 
half sample rate bracketed the half sample rate. We saw that 
the half sample rate resided midway between IFFT bins, the 
property we desired in the odd indexed channelizer. By 
translating DC to the half sample rate of a channelizer with 
an odd number of paths, we had the odd indexed channelizer 
without the complex heterodyne of data or filter weights. We 
then showed that under simple conditions, the sign reversals 
of the signal samples could be embedded in the polyphase 
filter weights so no operation was applied to input samples 
at the high input sample rate. 
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